BERNSTEIN POLYNOMIALS

Surya Teja Gavva

The Bernstein polynomial $B_{n}(f)$ of a function f defined on $[0,1]$ is defined as

$$
B_{n}(f)(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right)
$$

Approximation theorem

Let f be a function defined on $[0,1]$. For each point x of continuity of $f, B_{n}(f)(x) \rightarrow f(x)$ as $n \rightarrow \infty$. If f is continuous on $[0,1]$, then the Bernstein polynomial $B_{n}(f)$ converges to f uniformly i.e., $\max _{x \in[0,1]}\left|f(x)-B_{n}(f)\right| \rightarrow 0$. Morever for x a point of differentiability of f, $B_{n}^{\prime}(f)(x) \rightarrow f^{\prime}(x)$ If f is continuously differentiable on $[0,1]$, then $B_{n}^{\prime}(f)(x) \rightarrow f^{\prime}(x)$ uniformly.

We have the following formulae

$$
\begin{gathered}
B_{n}(1)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}=1 \\
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}\left(\frac{k}{n}\right)=x \\
B_{n}\left(x^{2}\right)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}\left(\frac{k}{n}\right)^{2}=\frac{n-1}{n} x^{2}+\frac{x}{n} \\
\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}\left(x-\frac{k}{n}\right)^{2}=\frac{x(1-x)}{n} \\
\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}\left(x-\frac{k}{n}\right)^{4}=\frac{x(1-x)(1+x(1-x)(3 n-6))}{n^{3}}
\end{gathered}
$$

Probabilistic idea:

$\binom{n}{k} x^{k}(1-x)^{n-k}$ is the probability of getting k heads in n throws if the probability of getting head is x.- See Bernoulli distribution.
Hence the above expression can be interpreted as the expectation of the random variable $f(K / n)$, where K is Bernoulli variable with probability parameter x The expected value of K is $n x$ and by law of large numbers, the probability is mostly concentrated around $k \approx n x$. So $f(k / n)$ is almost likely $f(x)$. Hence the expected value which is $B_{n}(f)$ behaves like $f(x)$ for large n.

Proof of the theorem:

$$
\begin{gathered}
B_{n}(f)(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right) \\
f(x)=f(x) \sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} \\
B_{n}(f)(x)-f(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right)-\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f(x) \\
\left|B_{n}(f)(x)-f(x)\right|=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}\left|f\left(\frac{k}{n}\right)-f(x)\right|
\end{gathered}
$$

We consider terms with $\left|\frac{k}{n}-x\right|<\delta$ and those with $\left|\frac{k}{n}-x\right| \geq \delta$ seperately. As discussed in the proof, the former contributes the most to the sum. δ is chosen as follows
Given $\varepsilon>0$, for x a point of continuity we have $|f(x)-f(y)|<\varepsilon$ if $|x-y|<\delta_{\varepsilon}$

$$
\begin{gathered}
\sum_{\left|\frac{k}{n}-x\right|<\delta}\binom{n}{k} x^{k}(1-x)^{n-k}\left|f\left(\frac{k}{n}\right)-f(x)\right| \\
<\sum_{\left|\frac{k}{n}-x\right|<\delta}\binom{n}{k} x^{k}(1-x)^{n-k} \varepsilon \\
<\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} \varepsilon=\varepsilon
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{\left|\frac{k}{n}-x\right| \geq \delta}\binom{n}{k} x^{k}(1-x)^{n-k}\left|f\left(\frac{k}{n}\right)-f(x)\right| \\
& <\sum_{\left|\frac{k}{n}-x\right| \leq \delta}\binom{n}{k} x^{k}(1-x)^{n-k}(2 M) \\
& <2 M \sum_{\left|\frac{k}{n}-x\right| \geq \delta} \frac{\left(x-\frac{k}{n}\right)^{2}}{\delta^{2}}\binom{n}{k} x^{k}(1-x)^{n-k} \\
& <2 M \sum_{k=0}^{n} \frac{\left(x-\frac{k}{n}\right)^{2}}{\delta^{2}}\binom{n}{k} x^{k}(1-x)^{n-k} \\
& =\frac{2 M x(1-x)}{n \delta^{2}}<\frac{2 M}{n \delta^{2}}
\end{aligned}
$$

Choosing n large enough so that $\frac{2 M}{n \delta^{2}}<\varepsilon$ we have

$$
\left|f(x)-B_{n}(f)\right|<2 \varepsilon
$$

